
What Counts as Code to Criticize?
Interpreting Visual and Natural Language Programming

Jeremy Douglass

Postdoctoral Researcher
Software Studies Initiative
University of California San Diego

Digital Humanities 2009 - U. Maryland College Park - 2009-06-24

Software Studies

Digital Humanities
Critical Code / Software Studies

expanding our concept of
what code we critique & how

what does it mean to
study software and

criticize code?

the question:

further,

what is possible when
performing critiques of

procedure &
specification?

programmer-level
representations

let’s consider a variety of

focus on three paradigms
many starting points, but let’s begin with a

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

prototypical
or stereotypical

code

SOURCE

IMPERATIVE
PROGRAMMING

SOURCE

OPERATION / DATA

CONCISION

REPETITION

EMPHASIS ON SYNTAX

SPECIALIZED VOCABULARY

COMMENTS

“source”
a point of
departure

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

NLP

EXPRESSIVE POWER

ACCESSIBILITY

IMITATION OF COMPLEXITY

OVERDETERMINATION

the problem:
abstraction
and depth

which do we
interpret?

the code?

or the
compiler?

implied reader
vs.

explicit reader

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

VISUAL

SPATIAL RELATIONSHIPS

SELF-REPRESENTING

TRACED RATHER THAN READ

A CLOUD OF BLACK BOXES

how do we
“close read”

a graphic
specification?

visual
literacy?

SOURCE FLOW

sequence space

literacy visual literacy

write map / graph

procedural flow in visual art

VISUAL

putting visual programming in context:

SCRIPTS COMICS GUIs

MAPS

VISUAL

INFOVIZ

VISUAL

VisualComplexity.com (2008)

prevalence of nodemaps in visualization art

Dorian Lynskey’s “Going Underground” (2006)

subway map remix art: specifying transitions

Dorian Lynskey’s “Going Underground” (2006)

from Bill Barker’s SCHWA

flowchart / directed graph as CYOA narrative

EGBG
Counter-script

Martijn Engelbregt

Counter-script part 1

visual flow specifies the protocol of performance

Other works by Englebregt

House of Leaves: mapping the labyrinth (2008)

document mapping to trace branching paths

Chris Ware’s Jimmy Corrigan [detail]

comic links complex backstories with paths

Jason Shiga’s Meanwhile

branching comic connects choices with paths

Scott McCloud’s Carl [detail]

branching comic embeds choices in a grid

a variety of ways to signify
sequence,
relation, &
procedure

what techniques do

 flow art &

 flow programming
have in common?

GRID

GRID

FLOW
ART

VISUAL
PROGRAMMING

PATCH

PATCH

GRID

GRID

FLOW
ART

VISUAL
PROGRAMMING

PATCH

PATCH

Jason Shiga’s Meanwhile

branching comic connects choices with paths

Miller Puckette / Cycling74’s Max / MSP

Yahoo! Pipes

Quartz Composer (OS X)

Quartz Composer (OS X)

Jason Shiga’s Meanwhile

GRID

GRID

FLOW
ART

VISUAL
PROGRAMMING

PATCH

PATCH

Scott McCloud’s Carl [detail]

Carnage
Heart

Carnage Heart: robot program [detail]

Scott McCloud’s Carl [detail]

/*****\ /*+*\ /!*/*!\ \ #
! + // \\ * * *
/**$**/ * * * * .
* +-----+ + +-----+
* * * * * *
\ / \ / \ /

PATH esoteric / weird programming language

... “cartesian programming”

the PATH interpreter follows a
path of instruction symbols
which make up a program. The
program can go up, down, left
and right, and can also overlap
itself. Also, the interpreter simply
skips over any characters that
aren't valid instruction symbols.

“

”

$ Start the program here, heading right.
End the program.
/ Turn 90 degrees without crossing line.
\ Turn 90 degrees without crossing line
+ Increment the current memory cell.
- Decrement the current memory cell.
! Jump over the next symbol.
. Output a character from current memory.
, Input a character from current memory.
} Move to the next memory cell.
{ Move to the previous memory cell.
^ If current memory is not 0, turn up.
< If current memory is not 0, turn left.
> If current memory is not 0, turn right.
v If current memory is not 0, turn down.

PATCH GRID

objects directions

sequences axes

relationships spatial relations

conclusion

VISUAL

PATCH AND
FLOW CONTROL
PROGRAMMING

NATURAL

NATURAL
LANGUAGE

PROGRAMMING

SOURCE

IMPERATIVE
PROGRAMMING

SOURCE FLOW

sequence space

literacy visual literacy

write map / graph

GRID

GRID

FLOW
ART

VISUAL
PROGRAMMING

PATCH

PATCH

PATCH GRID

objects directions

sequences axes

relationships spatial relations

there is no one type of
code to criticize

every logic of specification
is its own

paradigm for critique

Jeremy Douglass
Postdoctoral Researcher

Software Studies Initiative
University of California San Diego

