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Software Studies





Digital Humanities
Critical Code / Software Studies

expanding our concept of
what code we critique & how



what does it mean to 
study software and 

criticize code?

the question:



further,

what is possible when 
performing critiques of 

procedure & 
specification?



programmer-level
representations

let’s consider a variety of



focus on three paradigms
many starting points, but let’s begin with a
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“source”
a point of 
departure
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NLP

EXPRESSIVE POWER

ACCESSIBILITY

IMITATION OF COMPLEXITY

OVERDETERMINATION



the problem:
abstraction
and depth



which do we 
interpret?

the code?

or the 
compiler?



implied reader
vs.

explicit reader
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VISUAL

SPATIAL RELATIONSHIPS

SELF-REPRESENTING

TRACED RATHER THAN READ

A CLOUD OF BLACK BOXES



how do we 
“close read”

a graphic 
specification?

visual
literacy?



SOURCE FLOW

sequence space

literacy visual literacy

write map / graph



procedural flow in visual art

VISUAL

putting visual programming in context:
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VISUAL



VisualComplexity.com (2008)

prevalence of nodemaps in visualization art 



Dorian Lynskey’s “Going Underground” (2006)

subway map remix art: specifying transitions



Dorian Lynskey’s “Going Underground” (2006)



from Bill Barker’s SCHWA

flowchart / directed graph as CYOA narrative



EGBG
Counter-script

Martijn Engelbregt



Counter-script part 1

visual flow specifies the protocol of performance



Other works by Englebregt



House of Leaves: mapping the labyrinth (2008)

document mapping to trace branching paths



Chris Ware’s Jimmy Corrigan [detail]

comic links complex backstories with paths



Jason Shiga’s Meanwhile

branching comic connects choices with paths



Scott McCloud’s Carl [detail]

branching comic embeds choices in a grid



a variety of ways to signify
sequence,
relation, &
procedure 



what techniques do

 
 flow art  &

 
 flow programming
have in common?
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Jason Shiga’s Meanwhile

branching comic connects choices with paths



Miller Puckette / Cycling74’s Max / MSP





Yahoo! Pipes



Quartz Composer (OS X)



Quartz Composer (OS X)

Jason Shiga’s Meanwhile
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Scott McCloud’s Carl [detail]



Carnage
Heart



Carnage Heart: robot program [detail]

Scott McCloud’s Carl [detail]



/*****\   /*+*\   /!*/*!\  \     #
!     +  //   \\     *     *     *
/**$**/  *     *     *     *     .
*        +-----+     +     +-----+
*        *     *     *     *     *
\        /     \     /     \     /

PATH esoteric / weird programming language

... “cartesian programming” ....



the PATH interpreter follows a 
path of instruction symbols 
which make up a program.  The 
program can go up, down, left 
and right, and can also overlap 
itself.  Also, the interpreter simply 
skips over any characters that 
aren't valid instruction symbols.

“

”



$   Start the program here, heading right.
#   End the program.
/   Turn 90 degrees without crossing line.
\   Turn 90 degrees without crossing line
+   Increment the current memory cell.
-   Decrement the current memory cell.
!   Jump over the next symbol.
.   Output a character from current memory.
,   Input a character from current memory.
}   Move to the next memory cell.
{   Move to the previous memory cell.
^   If current memory is not 0, turn up.
<   If current memory is not 0, turn left.
>   If current memory is not 0, turn right.
v   If current memory is not 0, turn down.
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conclusion
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PATCH GRID

objects directions

sequences axes

relationships spatial relations



there is no one type of 
code to criticize



every logic of specification 
is its own

paradigm for critique
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